

National Urbanization Monitoring Assessment (NUMA)

Dave Hester

Geographic Analysis and Monitoring Program

Rocky Mountain Geographic Science Center

NUMA Geographic Perspective

- Five Themes of Geography
 - Location
 - People, Places, Time, Direction, and Distance
 - Places
 - Human and Physical characteristics
 - Human-Environmental Interactions
 - Humans modify the environment
 - Humans depend on the environment
 - Movement
 - People, Goods, and Ideas
 - Regions
 - Formal, Functional, and Perceived

NUMA Research Issues

- U.S. Population composition becoming increasingly more urban
- Urban land growth rate exceeding urban population growth
- Majority of urban growth spreading into rural landscapes
- Relatively cheap agricultural land encourages development on the urban fringe

Research Assumptions

- Metropolitan areas continue to be the economic engines driving regional urbanization
- Urban form follows densification thresholds and infrastructure development
- Urbanization is occurring faster in exurbia as compared to rural, suburban, & urban areas
- Regions with the highest socioeconomic and demographic growth rates should be the fastest urbanization engines

RANK	METRO AREA	1999	2000 2000	INCREASE
1.	Las Vegas, NV	20.5	54.6	166.3%
2.	Austin-San Marcos, TX	18.8	48.2	156.4%
3.	Laredo, IX	2.7	6.6	144.4%
4.	Provo-Green, UT	3.4	8.3	144.1%
5.	Boise, ID	5.9	14.4	144.1%
6.	Phoenix-Mesa, A2	47.3	114.2	141.4%
7.	Colorado Springs, CO	7.3	17.6	141.1%
8.	Myrtle Beach, SC	2.9	6.9	137.9%
9.	Fort Collins-Loveland, CO	3.5	8.3	137.1%
10.	Greeley, CO	2.2	5.2	136.4%
11.	Yolo, CA	3.9	8.9	128.2%
12.	Alboquerque, NM	11.3	25.6	126.5%
13.	Yuma, AZ	1.2	2.7	125.0%
14.	Corvatiis, OR	1.2	2.7	125.0%
15.	Atlanta, GA	73.4	164.2	123.7%
16.	Grand Junction, CO	1.7	3.8	123.5%
17.	Sioux Falts, SD	3.6	8.0	122.2%
18.	Boudler-Longmont, CO	5.4	12.0	122.2%
19.	Salt Lake City-Ogden, UT	21.1	46.4	119.9%
20.	Fayettesville-Springdale- Kopers, AR	4.1	9.0	119.5%

Research Hypotheses

- Do urban growth rates, urban form patterns, and land use transitions vary between Economic Areas?
- Does urbanization vary depending on the primary Core-Based Statistical Area within an Economic Area?
- Can land use transition probabilities be used to forecast rural-to-urban transformations?
- Are specific Economic Areas and urban forms causing greater ecological and societal impacts?

Research Methodology

- Classify Economic Areas based on Core-Based Statistical Area tiers
- Stratify Economic Areas using Average Population/Gross Regional Product rates
- Select Areas of Interest
 - Austin and San Antonio, Texas Economic Areas
- Subdivide Economic Areas
 - Rural-to-Urban Continuum Codes
- Extract indicators from Metrics database
- Conduct Land Use Trend Analysis and compute Human migratory paths

		wetropolitari wetropolitari wetropolitari			-
	EA:	0	c	D	
18.	NCode	CAName	PropORPhysPlan	PopPlant	CPPRM
2	92	Las Vegas-Paradise-Palvurip, NV	-		1
3	140	Serecte-Bradenton-Venice, FL	2	2	2
. 4	.13	Austin-Round Rock, TX		3	-3
5	120	Phoenic-Mess-Scottadale, AZ	4	4	4
.0.	3.23	Orlando-The Villages, FL	5	- 5	5:
7	104	McAlen-Edinburg-Phan, TX	- 6	6	15
ð.	136	Reno-Sparks, MV	7	. 0	12
9	57	Exyetteville-Springdale-Rogers, AR-MO	0	10	2
10	1. 17	Dend-Ihmeville, Off	9	7.	7 22
11.	36	Atlanta-Sandy Springs-Oainesville, GA-AL	10	14	6 8
12	36	Colorado Springs, CO	- 51	15	8
13	1.140	SecrementoArden-ArcedeTruckee, CA-NV	12	-9:	1.0
14	106	Misers Fort Cauderdale Many Deach, FL	13	9.9	13
15	58	Fingstelf, AZ	14	18	10
16	145	San Diego-Carlobad-San Marcos, CA.	15	24	11
17	164	Tompo-St. Petersturg-Clearwater, Ft.	16	22	16
18	169	Tuction, AZ	17	16	24
19	42	Delias-Fort Worth, TX	10	13	26
20	62	Ownesville, FL	19	23	24
21	45	Denver-Aurora-Boukter, CO	20	25	26 21 20
22	21	Borde City-Nampa, ID	21	12	33
23	142	Set Lake City-Option-Clearfield, UT	21 22	29	33 27 9 33
24	49	Dover, DE	23	44	9.
25	152	Seattle-Tacona-Chyrigia, WA	24	26	25
20	79	Jacksonville, F),	35	28	23
27	31	Charlotte-Gastonia-Sakstury, NC-SC	26	34	1.7
28	133	Risleigh-Eurham-Cary, NC	27	36	14
29	125	Pensacola-Ferry Pass-Brent, FL	29	33	26
30	115	Myrtle Beach Corway Oeorgetown, SC	29	36	10
31	75	Houston-Benfows-Huntsville, TX	20	20	40.
32	147	Secto Fe-Espanolo, NM	25	32	31
33	123	Panama City-Lynn Haven, FL	31 32	42	30
34	61	Freeno-Madera, CA	33	17	- 56
36	144	Sen Antonio, TK	34	50	37
36	163	Talabassee, FL.	35	45	29
37	56	Fermination, NM	36	19 27	50
36	6	Altoquerque, NM	37	- 57	44

FY06 Project Funding

- NUMA Budget
 - Geographic Analysis and Monitoring SIR
 - \$381K Total
 - \$255K: Government FTE Salaries
 - \$76K: SAIC Contractor
 - \$10K: Discretionary Operating Expenses
 - \$41K: RMGSC Overhead Cost Assessment
 - Edwards-Trinity CR Integrated Science Partnership
 - \$10K Geography allocation
- NUMA Team
 - RMGSC (3) Government FTE's and (1) SAIC Contractor
- GAM NUMA Statement of Intent
 - (5) Geographic Research Subtasks

Urbanization Logical Model

- Agent
- Driver
- Process
- Pressure
- Action
- State
- Pattern

Monitoring Urbanization

- Physical Urbanization Model
- Inventoried ~2600 indicators for monitoring landscape change
- Created Metrics Access database
- Provide capability to query Metrics database for urbanization monitoring indicators

Land Use Trend Analysis

Land Use Trends – San Antonio

Land Use Trends – Exurban (San Antonio)

Human-Induced Land Transformations

- Developed a statistical module to analyze temporal urban form characteristics
- ArcGIS Model
 Builder and Excel
 emulate SLEUTH and
 FRAGSTATS metrics

Urban Land Metrics

Economic Area 13 - Austin-Round Rock, Texas

	18mb	r of Others	Chine		en Edge Le sen, thouse			en Chier.			Other Ch		Uthen	Jamasia	nház
RUCC COMMERCE	3977	1992	2000	1977	1990	2000	1977	1992	2000	1977	1992	2000	1977	1992	2000
All Urbus	500 359	13,438 8,075	11,107	2,465 1,036	7,804 5,430	6,301 4,009	698 571	954 779	1,356	1,395 1,592	91 97	140 229	0.039	0.069	0.033
Substan Souther	99 54	2,804 1,772	2,907 1,985	372 256	1,307	1,364	75 41	102 60	129 73	7:57 7:55	36 34	40	0.039	0.106	0.061
Eurol	10	922	922	35	256	256	- 11	16	14	1,063	15	15	0.039	0.152	0.352

Economic Area 144 - San Antonio, Texas

	State	g of Others	Chan	Ub	en Edge Le ter, thouse	odr)	13th Arcusa	en Chiter a	Done)		Otton Clo		Dittor.	Armada	abda
RUCC Ceagury	3977	2992	2000	1977	1992	2000	1977	1992	2000	3977	3992	2000	1977	1992	2000
All	794	32,144	28,539	4,343	15,817	13,222	1,330	1,807	2,323	1,670	- 56	81	0.027	0.073	0.048
Urben	322	13,065	9,873	2,625	8,410	6,067	896	1,267	1,691	1,716	97	171	0.036	0.056	0.030
Subation	129	6,714	6,97	967	2,967	2.931	185	290	273	1.62	34	42	0.042	0.108	0.009
Ecates.	136	9,446	9,204	691	3,199	3,110	20.5	273.	322	1,703	29	35	0.025	0.097	0.090
Eural	26	3,010	3.000	- 51	1.194	1.194	14	37	37	509	12	33	0.040	0.271	0.221

Urban Aggregation Index values range from 0.0 to 1.0. Smaller values indicate urban land that is more highly aggregated

Human Migration - Population

- "Five Themes of Geography"
 - Movement of people, goods, and ideas
- Temporal migration analysis allows monitoring of potential future stress locations

Years Mapped	Mean Certer North Latitude (D-M-S)	Mean Center West Longitude (D-M-S)	Migration Distance from Previous Population Center (meters)	Migration Direction from Frevious Population Center (bearing - D-M-S)	Annual Populatio Center Migration Rate (meters)
1970	30-18-29	-97-45-11	10.00	10.00.00	
1980	30-19-34	-97-44-55	2,060	N10-27-43E	206.00
1990	30-20-19	-97-44-41	1,423	N15-04-17E	142.30
2000	30-21-07	-97-44-21	1,579	N19-56-02E	157.91
2010×	30-21-16	-97-44-13	348	N32-08-26E	34.81
2020*	30-21-29	-97-44-0)	540	N42-25-32E	54.02
2030*	30-21-47	-97-43-43	701	N39-09-33E	70.10
2040*	30-22-04	-97-43-25	719	N40-40-48E	71.93
*projects	rd	100000000000000000000000000000000000000	11 02/27		W-1520/25

Years Maoped	Mean Certer North Latitude (D-M-S)	Maan Center West Longitude (D-M-S)	from Previous	Migration Direction from Frevious Population Center (bearing - D-M-S)	Annual Population Center Migration Rate (meters)
1970	29-27-03	-98-30-19	10-27	100000000000000000000000000000000000000	1
1980	29-27-13	-98-30-03	531	N51-45-11E	53.11
1990	29-27-25	-98-29-47	555	N49-05-18E	55.54
2000	29-47-43	-98-29-40	578	N18-30-55E	57.77
2010*	29-27-49	-98-29-33	270	N46-39-46E	26.96
2020*	29-27-56	-98-29-24	337	N48-20-30E	33.66
2030*	29-28-03	-38-29-14	339	N48-51-53E	33.90
2040*	29-28-10	-98-29-05	314	N48-32-26E	31.42

Migration – Urbanized Area & Commuting

Land Use Modeling

- Investigate estimating and simulating landscape change
- Model would be demandside driven rather than supply-side (SLEUTH)
- Urbanization as a modeling process follows Logical Data Model architecture

Urbanization Demands and Impacts

- Water diversions to augment groundwater usage
- Austin and San Antonio traffic congestion
- San Antonio ozone levels
- Land use development on Edwards Aquifer recharge areas
- Value of nonagricultural versus agricultural land
- Endangered species habitat

Geography Science Plan

- Geography for a Changing World
 - Strategic Actions
 - 1.6 develop and implement a strategy for understanding the urban environment

NUMA Cooperators – MRGB Study

- USGS New Mexico Water Science Center
- NM Office of the State Engineer
- NM Bureau of Geology and Mineral Resources
- Middle Rio Grande Council of Governments
- University of New Mexico – Earth Data Analysis Center

NUMA Partnerships: Edwards-Trinity

- USGS Water Resources Discipline – Austin & San Antonio
- University of Texas at Austin: Community & Regional Planning Department
- Greater Austin-San Antonio Corridor Council
- Texas Commission on Environmental Quality
- USGS Geologic Discipline

NUMA FY06 Customers/Clients

- Federal Highways and Texas DOT
 - San Antonio temporal LULC data distributed for US Highway 181/Loop 1604 Toll Road litigation
- Capital AreaMetropolitan PlanningOrganization
 - Distributed Austin temporal LULC to assist 2035 Regional Plan's public urban growth visioning efforts

Publications

- USGS NUMA Factsheet (FS-2006-3040)
- Land Use Trend Analysis manuscript
- Human Migration poster

Outreach and Marketing

- Presented "Land Use Change in South Central Texas" at the FHWA Land Use & Transportation Planning Workshop
- USGS assistance provided to GAO "Urbanization, Agriculture, and Endangered Species Habitat" Study
- Developing DRAFT USGS NUMA website visualizing temporal urban landscape change

Land Use Trend Analysis Issues

- Vintage of Texas GAP LULC
 - USGS technical peerreview of NUMA temporal LULC data
 - Texas GAP data determined to be 1993 not 2003 as reported in the FGDC Metadata
 - GAP data deleted from NUMA land use trends research methodology
 - Recalculate temporal land use transitions and urban growth monitoring metrics

NUMA Project Timeline

- 3rd Quarter FY06 Plans
 - Human-Induced Land Transformations Analysis
 - Design population analysis module
 - Land Use Modeling
 - Generate Austin and San Antonio Economic Areas statistical landscape change estimates
 - Investigate implementing Urbanization Logical Data Model as a physical model for simulating landscape change within Economic Areas

NUMA Project Timeline

FY07

- Select (4) Economic Areas based on Gross Regional Product and Population rankings
- Each Economic Area selected would be from a unique Core-Based Statistical Area tier and Economic Region

Economic Area	1977 to 2003 GRP		CBSA Tier	Economic
	and POP percent change	Rank		Region
Miami Pt.	•		Mo ga-	South
Laukodab-Mami	5.29%	13	Metropolitan	Aflantic
Beach, FL				1
			Moga-	
Dallas-Fort Worth,	510%	18	Metropolitan	Southwest
IX				
Seattle-Tacoma-			Mo ga-	
Olympia, WA	4.96%	24	Metropolitan	Fax West
Saraso te Bradenton			AAA-	South
Venice, FL	6.90%	2	Me tropolitan	Atlantic
McAllen Edinburg			AAA-	
Phan, IX	5.61%		Metropolitan	Southwest
			AAA-	Recky
Colorado Springs, CO	5.40%	11	Metropolitan	Mountain.
Rene-Spank, NV	5.59%	7	AA- Motropolitan	Faz Wost
Paye to ville-			· •	
Springlak-		l	AA-	Lewer
Rogers, AR-MO	5.52%	S	Metropolitan	Міскіструі
-			AA-	Recky
Boise City-Nampa, ID	5.02%	21	Metropolitan	Mountain
Bersl-Prine ville, OR.	5.51%	9	A- Motropolitan	Faz West
			A-	
Flagstaff, A.Z	5.27%	14	Metropolitan	Southwest
			A-	South
Gainesville, FL	5.05%	19	Metropolitan	Atlantic
Iraus no City, MI	+13%	54	Micropolitan	Great Lake
Alpena, MI	3.93%	- 11	Micropolitan	Great Lake
	22274			Becky
ī win Falk, ID	3.87%	19	Micropolitan	Mountain

Economic Area Comparative Analysis

- Urban land growth rate exceeding urban population growth
- Urban growth occurring faster in exurban landscapes
- Majority of urban growth spreading into rural landscapes
- Process of urbanization and urban land patterns varies between Economic Areas

Conclusions – Future Urbanization

- San Antonio and Austin are southern anchors for I-35
 Megapolitan corridor
- Peripheral urban expansion via Texas State Highway 130 and Trans-Texas Corridor
- Toyota manufacturing plant will support future economic growth for the San Antonio Economic Area
- Austin-Round Rock Metropolitan Statistical Area ranked #10 nationwide in high-tech growth (1990-1998)
- Austin & San Antonio Metropolitan Statistical Areas' population projected to increase from 2.8M in 2000 to 4.8M by 2040

Additional Information

- dhester@usgs.gov
 - **(303) 202-4318**
- RMGSC NUMA investigation
 - rockyitr.cr.usgs.gov/rmgsc/m ain/regionalMonitoring.htm
 - rockyweb.rocky.cr.usgs.gov/ numa
- USGS Urbanization research
 - landcover.usgs.gov/urban/int ro.asp
 - pubs.usgs.gov/circ/2004/circ1 252/
 - landcover.usgs.gov/urban/inf o/factsht.pdf

